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ABSTRACT

We propose an algorithm to solve the problem of Time-Resolved
Cardiac Computed Tomography (CT). The algorithm reconstructs a
snapshot of the moving heart at any time instant from CT projection
data acquired over a single heart-cycle. The object is modeled by a
spatio-temporal state-space model, and an ensemble Kalman Filter
(a Monte-Carlo approximation to the Kalman filter) is used to assim-
ilate the sequentially acquired projection data. Simulation results of
the dynamic NCAT cardiac phantom, under the fan-beam geometry
and a two-source CT system, show reconstructions that are free of
the motion artifacts that mar conventional methods.

Index Terms— Cardiac, Dynamic Tomography, Time-resolved,
Computed Tomography, Kalman filter

1. INTRODUCTION

Cardiac disease is the leading cause of death in the industrialized
world. Recent interest [1] in reconstructing high-resolution images
of the moving heart is driven both by the need to improve existing
clinical applications, such as the detection of heart-wall motion ab-
normalities or the determination of parameters such as peak ejection
fraction, and the potential for future applications such as the study
of the relationship of cardiac motion to perfusion, stenosis, ischemia
or infarction.

Recognizing the potential of cardiac CT (in providing superior
spatial resolution and much shorter imaging times than MRI, for ex-
ample) equipment manufacturers have introduced products such as
the 320-slice Toshiba scanner that allows for coverage of the whole
heart with a circular trajectory and the dual-source Siemens scan-
ner that allows for the imaging of the quiescent heart phase within a
single heart cycle.

The majority of early work on cardiac CT imaging has been on
how best to combine data from multiple heart-cycles to reconstruct
the data in the quiescent heart phase (when the heart is almost static).
The actual reconstruction algorithms used are variations of conven-
tional backprojection, sometimes modified by a weighting function
to reduce motion artifacts. There has been some preliminary work
on reconstructing an image of the heart in the nonquiescent phase by
framing it as an optimization problem that maximizes data consis-
tency (matching the measured projections to the projections of the
reconstructed object) while making reasonable assumptions about
nature of the object such as the continuity or smoothness of the
objects and its borders in space and time or the smoothness of the
motion-vector field ([1, 2] and the references therein).

This research was partly supported by the Research Board at the Univer-
sity of Illinois at Urbana-Champaign.

We present an algorithm based on the ensemble Kalman filter
[3] (EnKF) : a Monte Carlo approximation to the Kalman filter, that
has previously been used to address problems in weather prediction,
acoustic tomography and remote sensing. The algorithm in this pa-
per is the localized EnKF[4] that has been adapted to cardiac CT.
We use the quiescent-phase reconstruction as a prior and choose the
Kalman noise model based on our knowledge of the motion of hu-
man organs. The results of our numerical experiment with the NCAT
(NURBS [nonuniform rational B-spline] based cardiac torso phan-
tom) [5] cardiac phantom display reconstructions that are free of the
motion artifacts that mar conventional reconstruction methods. This
promising method can be extended to other medical imaging modal-
ities such as MRI.

2. PROBLEM FORMULATION

2.1. The dynamic CT problem
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Fig. 1. The single-source fan-beam
CT geometry with a source-radius D,
source angle β and fan angle γ.

Our goal is to recon-
struct a movie of a
beating heart from
fan-beam projections.
While in this paper we
describe the reconstruc-
tion of a single trans-
verse slice of the heart,
the algorithm can be
generalized to 3D vol-
umes. The fan-beam
projections are ob-
tained in a two-source
CT system in which
a source of x-rays re-
volves around the ob-
ject in a circle of radius
D. As shown in Figure
1, each fan-beam projection pβ(γ, t) parameterized by the source
angle β, fan-angle γ and time t, consists of a set of line-integrals of
the object f(�x, t). Since the sources in our two-source system are
separated by an angle of π/2 rad, at every time instant ti exactly
two fan-beam projections are measured: with the first x-ray source
at source angle βi and the second source at source angle βi + π/2.
The discrete set of measurements made at the time-instant ti is

{pβi
(γ1, ti), pβi

(γ2, ti), ..., pβi
(γF , ti),

pβi+π/2(γ1, ti), pβi+π/2(γ2, ti), ..., pβi+π/2(γF , ti)}
(1)

The sources rotate at three revolutions per second with each
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source generating P (≈ 1000) projections every revolution. For typ-
ical heart rates of 60 to 100 beats/min the length of a single heart
cycle is typically between 1.0 s and 0.6 s corresponding to 2 to 3
CT gantry rotations. From projections gathered over as little as a
single heart cycle we wish to reconstruct the snapshots f(�x, ti) of
the moving heart at any time instant within that measurement time
frame.

An image of a static object can be reconstructed from fan-beam
projections with a range of π + Γ rad using a filtered backprojec-
tion algorithm, where Γ is maximum extent of the fan-angle (Γ =
2arcsin (R/D) in Figure 1). The difficulty in applying reconstruc-
tion methods that are designed for static objects is that there can be
significant movement of the heart during the time frame in which
π + Γ rad of projections are gathered. Consequently the projection
measurements do not correspond to a single static object and are in-
consistent. Therefore, applying the filtered backprojection algorithm
to the dynamically gathered projections results in motion artifacts in
the reconstructed snapshots.

2.2. Linear MMSE estimation

We set up the problem in a state-space formulation in which we es-
timate the state xi of the object at time-index i by measurements
made at various other time-instants. We choose the state of the ob-
ject to be theN2-length vector of pixel values of theN ×N image.
The dynamic evolution of the object, and the measurement of the
dynamically evolving object, by fan-beam projections, is modeled
as follows :

�xi+1 = Fi�xi + �ui �yi = Hi�xi + �vi (2)

where �xi, �ui ∈ R
N2×1 and �yi, �vi ∈ R

M×1.
The first equation is the time-update equation, which describes

what happens to the state vector �xi as time progresses. The matrix
Fi describes how the state at a time index i + 1 is related to the state
at the previous time index. The vector �ui, which we call the state
noise, is a random vector whose covariance matrix is E[�ui�u

T
i ] �

Qi. Inclusion of the state noise in our model allows for error in the
model of the state evolution. (For convenience, from now on we
drop the vector notation�· for state and measurement vectors.)

The second equation is the measurement equation, which de-
scribes how yi, the measurement made at time index i, is related to
the state vector xi at that time instant. The elements of the length-
2F vector yi belong to the set described in (1). In particular yi[m] =
ȳi[m] + vi[m] where

ȳi[m] =

(
pβi

(γm, ti) ifm = 1, 2, ..., F

pβi+π/2(γm−F , ti) ifm = F + 1, F + 2, ..., 2F

(3)
The matrixHi describes tomographic projection in the fan-beam ge-
ometry and ȳi = Hixi. The mth row of Hi, denoted hi,m, per-
forms a weighted summation of the pixels of the image, i.e., the
elements of the vector xi, to produce the line integral ȳi[m]. So
ȳi[m] = hi,mxi. The vector vi is a random vector, representing the
measurement noise with covariance matrix E[viv

T
i ] � Ri is a diag-

onal matrix derived from the standard CT signal dependant additive
noise approximation to the Poisson noise model.

The problem is to estimate the state of the object at all time
indices {xi : i = 1, 2, ..., T }, given the measurements {yi : i =
1, 2, ..., T } at all those time indices. The Kalman filter finds the
linear minimum mean-square error (MMSE) estimate of xi given
all the previous measurement. It does so in the following recursive

manner. At the beginning of the algorithm, a guess of the state of the
object (i.e., x̂1|0 � x0) at time i = 1, and a guess of the state of the
error covariance matrix of that guess (i.e., P1|0 � Π0) is made. Then
the Kalman filter recurses through every time index (i = 1, 2, ..., T )
and estimates x̂i|i, the state of the object at that time index based on
past measurements. At every time index two updates are made: (a)
the measurement update and (b) the time update:

(a) Measurement update : x̂i|i = x̂i|i−1 + Ki(yi − Hix̂i|i−1)

whereKi =Pi|i−1H
T
i (HiPi|i−1H

T
i + Ri)

−1

and Pi|i =Pi|i−1 − KiHiPi|i−1

(b) Time update : x̂i+1|i = Fix̂i|i

Pi+1|i = FiPi|iF
T
i + Qi

In the time update step the state vector x̂i+1|i and the covariance
matrix Pi+1|i are estimated on the basis of the forward model and
the past measurements {yi′ : i′ = 1, 2, ..., i}. In the measurement
update step the current measurement yi is incorporated by altering
the estimate of the state vector by the difference [yi − Hix̂i|i−1]
scaled by the Kalman gain matrixKi.

2.3. Motion model and state noise

Cardiac motion can be described as motion and deformation of ob-
jects (heart chambers and vessels, and their walls) and fluids (blood,
with or without contrast agent). This motion is modeled as the linear
interpolation of the pixels from frame to frame as follows. Sup-
pose the 2D interpolant used is Υ(�r) (where �r is the continuous
Cartesian spatial variable); then the underlying continuous image
xc

i(�r
′) is expressed in terms of the pixels of the image xi(n) as:

xc
i(�r

′) =
P

n′ xi(n
′)Υ[�r′ − �r(n′)]. Here �r(n) is the spatial co-

ordinate associated with the nth pixel. The motion of the object
between time-frames is then modeled as xi+1(n) = xc

i (�r(n) + �un)
where �un is the motion of the nth pixel in frame i + 1.

The true motion �un is a priori unknown. As explained later in
this section, an estimate �dn of �un is made before the Kalman filter is
applied. The true motion �un = �dn + �ηn, where �ηn is a 2D random
vector with a pdf Φ that describes the uncertainty in the a priori
motion estimate. The time interval between consecutive projections
is so small that �un and, therefore, �ηn are on the order of a pixel
length. The choice of Φ governs the covariance Qi of the state noise
�ui in (2) and, in turn, the structure of the Kalman gain matricesKi.

The expected value of the pixel in the (i + 1)th frame depends
on the probability density function Φ: E[xi+1(n)] =

EΦ[xc
i (�r(n)+ �dn+�ηn)] =

Z
xc

i (�r(n) + �dn + �ηn)Φ(�ηn)d�ηn (4)

Similarly, the variance of the pixel value is

σ2[xi+1(n)] = EΦ

„n
xc

i [�r(n) + �dn + �ηn] − E[xi+1(n)]
o2

«
(5)

which can be approximated in the discrete-domain by a weighted
sum over pixels in its neighborhood:

σp[xi+1(n)] =
X

n′ �=n

w[�r(n) − �r(n′)]
˛̨
E[xi+1(n)] − xi+1(n

′)
˛̨p

Here w determines the weights and p > 0 determines the power by
which the differences between the pixel and its neighbors are scaled.
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While a direct application of the trapezoidal integration rule would
lead to p = 2 in the above equation, our numerical experiments
suggest that using p = 1 produces reconstructions with better edge
preservation.

Consider σ2[xi+1(n)] in different regions of the image. In flat
regions of the image, where it is constant on a disc of radius RΦ

around the point �r(n) + �dn, the expected value EΦ[x̂i+1|i(n)] =

xc
i|i(�r(n) + �dn) and the variance σ2[xi+1(n)] in (5) is 0. In con-
trast, in regions that are not flat (such as points along the boundaries
of objects) the variance is high and increases as the range of pixel-
values (in a radius-RΦ-disc) increases.

The probability density function Φ that we use is such that
EΦ[xi+1(n)] ≈ xc

i (�n + �dn). This expression can be expressed as a
linear operation EΦ[�xi+1] = Fi�xi where Fi is a sparse matrix that
depends on Υ, the 2D interpolant used in the image model. Addi-
tionally, we make the assumption that the state noise is uncorrelated
between pixels so that the covariance matrix Qi of the state noise is
a diagonal matrix with Qi(n, n) = σ2[xi+1(n)] as defined in (5).

A consequence of our choice of state-error noise model is that
the Kalman gain matrix tends to make greater alterations to the pixels
of the image that are in a neighborhood with a large pixel-value range
(such as pixels near edges of objects rather than those in flat regions).

In scenarios such as ours where the time interval between recon-
structed frames is small, the identity map Fi(�x) = �x might suffice.
Alternatively, an estimate of the motion is obtained from the projec-
tion data by reconstructing low-pass estimates of the image frames
(naively) from low-passed fan-beam projections and then using an
Optical Flow algorithm [6] to estimate the motion field �dn between
frames.

2.4. Initialization

During the diastasis phase of the heart cycle, the heart is almost
static. Projections gathered during this quiescent period are used
to estimate the prior x0 of the EnKF. Using the method of Parker’s
weights it is possible to reconstruct x0 from a source-angle range of
π + Γ. In our two source system, it is necessary for each source to
move by π/2 + Γ rad for the two sources to provide the adequate
range of source angles π + Γ. At 3 revolutions per second, this is
achieved in less than 0.12 s (assuming source-radius D = 57 cm
and radius of the thorax R = 20 cm, and therefore Γ = 0.72 rad).
For typical heart-rates the quiescent period is longer than 0.12 s.

3. REDUCTION OF COMPUTATIONAL COST

3.1. The ensemble Kalman filter

For large N the Kalman filter becomes expensive. For example, the
measurement update steps costO(N4M) operations at every step of
the iteration, and the N2 × N2 covariance matrix Pi|i′ needs to be
stored and updated. The EnKF uses statistical (Monte Carlo) tech-
niques to estimate the evolving dynamic states and their covariance
matrices. Unlike the standard Kalman filter, the EnKF maintains not
one, but an ensemble of L estimated states {xl

i| : l = 1, 2, ..., L}.
The EnKF estimates the relevant covariance matrices by averaging
over this ensemble.

To initialize, we use the initial guess x0 and the initial covari-
ance estimate Π0 to generate, using a pseudorandom noise genera-
tor, an ensemble of L initial states: xl

1|0 ∼ N (x0, Π0). The random
variables yl

i ∼ N (yi, Ri) and ul
i ∼ N (0, Qi) in the EnKF are gen-

erated using standard pseudorandom number generators.

(a) Measurement update: x̂l
i|i = x̂l

i|i−1 + Ki(y
l
i − Hix̂

l
i|i−1)

K̂i = (P̂i|i−1H
T
i )[Hi(P̂i|i−1H

T
i ) + Ri]

−1

where P̂i|i−1H
T
i =

1

L − 1

LX
l=1

x̃l
i|i−1(Hix̃

l
i|i−1)

T

x̄i|i−1 =
1

L

LX
l=1

xl
i|i−1 and x̃l

i|i−1 = xl
i|i−1 − x̄i|i−1

(b) Time update : x̂l
i+1|i = Fi(x̂

l
i|i) + ul

i

3.2. Further optimizations

Sequential measurement update: If the noise of the individual
measurements is independent as in the case of CT, then the covari-
ance matrix Ri is diagonal, and the measurement update step can be
performed sequentially. At every time index, instead of processing
all M measurements (i.e., detectors) in one step, the update can be
performed in M steps. This means that the relevant measurement
matrices H are not M × N2 but are instead 1 × N2 in size, and
the computation of K̂i in the meas. update step is reduced to the
inversion of a scalar rather than a matrix. Notice that the N2 × N2

covariance matrix P̂ is never explicitly computed. It suffices, in-
stead, to compute theN2 × 1 vector P̂i|i−1h

T
i,m.

Localization: For reasons of computational practicality we expect
the dimensions of the state vector �x (= N2) to be, typically, much
larger than the size of the ensemble L. While the estimates of the
EnKF approach those of the canonical Kalman filter for large en-
sembles, the behavior of the EnKF is not guaranteed to be similar
to that of Kalman filter for small ensembles. Localization is a tool,
related to other statistical methods known as covariance shrinkage
or tapering, that is used to improve the behavior of the EnKF for
small ensembles. Localization additionally provide reductions in
computational cost. Because of localization the estimated matrix
P̂i|i(hi,m)T (an N2 × 1 matrix) is nonzero only on pixels that are
within a fixed correlation radius (cr) of the line along which the line-
integral is performed.
Reduction to ROI: The computational cost of the EnKF algorithm
scales with the number of pixels to be reconstructed. The dynamic
region of interest (ROI), the cardiac region, is a small fraction of
the whole torso but since x-rays are transmitted and absorbed by the
noncardiac objects the noncardiac objects have to be accounted for
in the reconstruction. This is done by estimating the non-ROI region
from the quiescent phase, subtracting the projections of this non-ROI
region from the full dynamic projections, modeling the uncertainty
in the estimate as measurement noise in (2) and finally smoothly
patching the ROI and non-ROI regions together if necessary.

3.3. Computational cost

With the above optimizations it can be shown that the cost of each
time-index of the EnKF is O(N2Lc2

r) where L is the size of the en-
semble and cr is the correlation radius of the localization mask. In
comparison the conventional Kalman filter which incorporates a se-
quential measurement update and sparse covariance matrices Pi|i−1

and Pi|i (with c2
r nonzero entries per row) can be shown to cost

O(N2Mc2
r) = O(N3c2

r) computations per time-index. In practice
the ensemble size L is a fraction ofN (in our numerical experiments
L ≈ N/2), and therefore, both the EnKF and the Kalman filter dis-
play the same order of computational complexity O(N3c2

r). Our
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Ground Truth Conventional

EnKF Reconstruction Slices through reconstructions

Fig. 2. A single time-frame of the NCAT phantom. Also shown is
a detail of an oblique slice through each: ground truth (dashed line),
conventional (dotted line) and EnKF (solid line).

numerical experiments suggest that the EnKF is more efficient in
practice than the Kalman filter.

It may also be noted that the EnKF framework lends itself to
a parallelized implementation where the members of the ensemble
are processed in parallel. In addition, nonlinear prior motion models
F are easily incorporated into the EnKF. We incorporate a median-
filtering (on a 3 × 3 pixel window) into every fifth frame of the mo-
tion model as it is seen to improve the visual quality of the recon-
struction.

4. NUMERICAL EXPERIMENTS

We test our method on the dynamic NCAT phantom[5] of the human
torso with a (high) heart rate of 100 beats/min. At every time instant,
two fan-beam projections (separated by π/2 rad in source angle) are
obtained and the sources take 1200 source-positions per revolution at
a speed of 3 revolutions per second. The dynamic ROI is 190× 190
pixels. Projections are gathered for about the length of a single heart
beat (0.6 sec) which is equivalent to 1200 × 3 × 0.6 = 2160 time
instants ti. To save on computations the EnKF is run on only half of
this data (data from every alternate time-instant is discarded).

Figure 2 shows a single frame of the phantom and of the recon-
structions from projections using the conventional method and our
method. It is clear that the reconstructed frame using our method is
free of the motion artifacts (such as unclear and misaligned object
boundaries) that mar the conventional method. A detail of a profile
of the three images along an oblique cut is shown in the bottom right
subplot of Figure 2. The misalignment of the edge of the conven-
tional reconstruction is better seen in the profile.

In Figure 3 the oblique cut from Figure 2 is displayed for the full
heart cycle. The EnKF reconstruction is seen to match the dynamic
behavior of the phantom, while the conventional reconstruction dis-
plays motion artifacts.

Ground Truth

Conventional

EnKF

Fig. 3. Slices through the reconstructed image over a full heart cycle.

5. CONCLUSION
We have demonstrated the application of the EnKF to cardiac CT re-
construction. Our numerical simulations show that reconstructions
of the heart during nonquiescent cardiac phases are free of the mo-
tion artifacts present in conventional reconstructions. There is po-
tential for future work in improving the quality of reconstructions
by fine-tuning the state-noise model, adapting the EnKF to other
dynamic imaging scenarios, such as the case of single-source CT,
and other modalities such as MRI. There is also room for theoretical
work in characterizing the conditions for the optimal performance of
the EnKF.

6. REFERENCES

[1] K. Taguchi, Z. Sun, W.P. Segars, E.K. Fishman, and B.M.W.
Tsui, “Image-domain motion compensated time resolved 4D
cardiac CT,” Proceedings of SPIE, vol. 6510, pp. 651016, 2007.

[2] S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemaud,
and P. Grangeat, “Dynamic X-ray Computed Tomography,”
Proceedings of the IEEE, vol. 91, no. 10, pp. 1574–1587, 2003.

[3] G. Evensen, “The ensemble Kalman filter: Theoretical formu-
lation and practical implementation,” Ocean Dynamics, vol. 53,
no. 4, pp. 343–367, 2003.

[4] M.D. Butala, R.A. Frazin, Y. Chen, and F. Kamalabadi, “A
Monte Carlo technique for large-scale dynamic tomography,” in
IEEE International Conference on Acoustics, Speech and Signal
Processing, 2007, vol. 3, pp. 1217–1220.

[5] W.P. Segars, Development and Application of the New Dynamic
NURBS-based Cardiac-torso (NCAT) Phantom, Ph.D. thesis,
University of North Carolina at Chapel Hill, 2001.

[6] T. Gautama and MA Van Hulle, “A phase-based approach to the
estimation of the optical flow field using spatial filtering,” IEEE
Transactions on Neural Networks, vol. 13, no. 5, pp. 1127–1136,
2002.

1492


